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Abstract
It is well known that a classical dynamical r-matrix can be associated with every
finite-dimensional self-dual Lie algebra G by the definition R(ω) := f (ad ω),
whereω ∈ G and f is the holomorphic function given by f (z) = 1

2 coth(z/2)−
1/z for z ∈ C \ 2π iZ∗. We present a new, direct proof of the statement that
this canonical r-matrix satisfies the modified classical dynamical Yang–Baxter
equation on G.

PACS numbers: 02.10.De, 02.10.Yn, 02.20.Sv, 02.30.Ik

1. Introduction

Dynamical generalizations of the Yang–Baxter equations and the associated algebraic
structures are a focus of current interest due to their applications in the theory of integrable
systems and other areas of mathematical physics and pure mathematics (see [1] for a review).
The present paper contains a detailed study of a particular dynamical r-matrix, which is an
important special case of the classical dynamical r-matrices introduced in [2].

Let us recall that dynamical r-matrices in the sense of Etingof and Varchenko [2] are
associated with any subalgebra H of any (complex or real) Lie algebra G. By definition, a
dynamical r-matrix is a (holomorphic or smooth) G ⊗ G-valued function on an open subset
Ȟ∗ of the dual space H∗ of H subject to the following three conditions. First, r must satisfy
the modified classical dynamical Yang–Baxter equation (mCDYBE):

[r12, r13] + [r12, r23] + [r13, r23] + T 1
j

∂r23

∂ωj

− T 2
j

∂r13

∂ωj

+ T 3
j

∂r12

∂ωj

= ϕ (1.1)

where ϕ is some constant, G-invariant element of G ∧ G ∧ G. The ωj are coordinates on H∗

with respect to a basis {Tj } of H, and the usual tensorial notation as well as the summation
convention are used. The second condition is that (r + rT), where (Xa ⊗Y a)T = Y a ⊗Xa , is a
G-invariant constant. The third condition requires the map r : Ȟ∗ → G ⊗ G to be equivariant
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with respect to the (coadjoint and adjoint) infinitesimal actions of H on the corresponding
spaces. The mCDYBE becomes the CDYBE for ϕ = 0.

In most applications G is a simple Lie algebra and H is (a subalgebra of) a Cartan
subalgebra. Another interesting special case is obtained by taking H := G. We consider
this latter case, and allow G to be any self-dual Lie algebra for which G∗ can be identified with
G by means of an invariant scalar product 〈 , 〉. We here study the dynamical r-matrix given
by the formula

r : ω �→ r(ω) := 〈Tj , f (ad ω)Tk〉T j ⊗ T k ω ∈ Ǧ (1.2)

where Ǧ ⊂ G is an open subset, {Tj } and {T k} denote dual bases of G, 〈Tj , T k〉 = δkj , and f is
the complex analytic function defined by

f (z) := 1

2
coth

z

2
− 1

z
z ∈ C \ 2π iZ∗. (1.3)

It is known that this r-matrix is a solution of the mCDYBE (1.1) for H = G � G∗ with

ϕ = − 1
4f

l
jkT

j ⊗ T k ⊗ Tl [Tj , Tk] = f l
jkTl. (1.4)

If G is a simple Lie algebra, then the mCDYBE for r in (1.2) follows from a general result
(theorem 3.14) in [2]. Remarkably, this r-matrix came to light naturally in two different
applications, namely in the context of equivariant cohomology [3] and in the description of a
Poisson structure on the chiral WZNW phase space compatible with classical G-symmetry [4].
A further reason for which the r-matrix in (1.2) is important is that it can be reduced to certain
self-dual subalgebras of G, and thereby serves as a common ‘source’ for a large family of
dynamical r-matrices [5]. We call it the canonical r-matrix of the self-dual Lie algebra G.

The authors of [3] assumed G to be compact, while in [4] G was taken to be a simple Lie
algebra. In these papers the mCDYBE for the canonical r-matrix was proved, independently,
using the additional assumption that ω is near to zero, so that f (ad ω) is given with the aid
of the power series expansion of f (z) around z = 0. Though this is not obvious, the proofs
found in [3, 4] (see also [6, 7]) can in fact be adapted to cover the case of a general self-dual
Lie algebra as well. In this case, a different proof of the mCDYBE appeared in [8]. This proof
is indirect and uses the restriction of ω to a neighbourhood of the origin. The maximal domain
of definition of f (ad ω) contains all ω for which the eigenvalues of ad ω lie in C \ 2π iZ∗.
Although the above-mentioned local proofs and the analyticity of r(ω) together imply the
mCDYBE on this domain, it could be enlightening to have an alternative direct proof, too.

The purpose of this paper is to present a direct proof of the mCDYBE for the canonical
r-matrix. As opposed to the local power series expansion around 0, we here use the well
known [9] holomorphic functional calculus of linear operators to define f (ad ω), and thus our
proof is valid globally on the maximal domain of the ‘dynamical variable’ ω. An advantage
of our proof is that it also yields a uniqueness result for the holomorphic function f (z) that
enters the definition of the r-matrix in (1.2). Namely, on taking formula (1.2) as an ansatz the
mCDYBE translates into a functional equation (equation (C.1)) for the holomorphic function f
that has (1.3) as its unique solution under certain further natural conditions. Despite its length,
its elementary character and the uniqueness result that it implies might justify presenting our
proof.

After this introduction, the paper consists of two sections and three appendices. The
proof of the mCDYBE is described in section 2. It relies on some technical material collected
in the appendices. Appendix A recalls relevant basics of the functional calculus from [9]—
if necessary, the reader might consult that first—while the other two appendices should be
consulted as referred to in the proof. Section 3 is devoted to a discussion of consequences
of the proof, including the above-mentioned uniqueness result for the function f , and some
comments.
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2. Proof of the mCDYBE for the canonical r-matrix

Let G be a finite-dimensional complex Lie algebra equipped with an invariant, symmetric,
nondegenerate bilinear form 〈 , 〉. For the structure of such Lie algebras, see e.g. [10]. We call
these Lie algebras self-dual, since we identify G with G∗ by means of the ‘scalar product’ 〈 , 〉.
Defining the transpose AT of an operator A ∈ End(G) by 〈ATX, Y 〉 = 〈X,AY 〉 (∀X, Y ∈ G),
the invariance property of 〈 , 〉 means that (ad ω)T = −ad ω (∀ω ∈ G), where (ad ω)(X) =
[ω,X].

Consider a map r : Ǧ → G ⊗ G, where Ǧ ⊂ G is a nonempty open subset. Then there
exists a unique map R : Ǧ → End(G) for which

r(ω) = 〈Tj , R(ω)Tk〉T j ⊗ T k ∀ω ∈ Ǧ (2.1)

where {Tj } and {T k} denote dual bases of G. The directional derivatives of R are given by

(∇SR)(ω) := d

dt

∣∣∣∣
t=0

R(ω + tS) ∀S ∈ G, ω ∈ Ǧ (2.2)

and the ‘gradient’ of R is defined by

〈X, (∇R)(ω)Y 〉 := T j 〈X, (∇Tj R)(ω)Y 〉 ∀X, Y ∈ G, ω ∈ Ǧ. (2.3)

If r is antisymmetric, i.e., RT(ω) = −R(ω), then the mCDYBE (1.1) for r with ϕ in (1.4)
is in fact equivalent to the following equation for R:
1
4 [X, Y ] + [R(ω)X,R(ω)Y ] − R (ω) ([R(ω)X, Y ] + [X,R(ω)Y ]) + 〈X, (∇R)(ω)Y 〉

+(∇YR)(ω)X − (∇XR)(ω)Y = 0 ∀X, Y ∈ G, ω ∈ Ǧ. (2.4)

The G-equivariance of the map r : Ǧ → G ⊗ G can be expressed as

(∇[S,ω]R)(ω) = [ad S,R(ω)] ∀S ∈ G, ω ∈ Ǧ. (2.5)

Having made these remarks, we are ready to study the canonical r-matrix. From now on
we use

Ǧ := {
ω ∈ G | σ(ad ω) ∩ 2π iZ∗ = ∅ } (2.6)

which is a nonempty open subset in G. Here and below, σ(ad ω) denotes the spectrum of
ad ω (∀ω ∈ G), and sometimes we use the notation ω̄ := ad ω for brevity. With the aid of the
familiar holomorphic functional calculus (see appendix A), we can define an operator-valued
dynamical r-matrix R: Ǧ → End(G) by

ω �→ R (ω) := f (ad ω) = 1

2π i

∫
C

dξ f (ξ)(ξI − ad ω)−1 (2.7)

where f is given in (1.3). The curve C encircles each eigenvalue of ad ω and I is the identity
operator on G. Now our main theorem can be formulated as follows.

Theorem 1. The mapping (2.7) with f in (1.3) defines an antisymmetric r-matrix which
satisfies the equivariance condition (2.5) and the mCDYBE given by (2.4).

The antisymmetry of the r-matrix follows from (2.7) by using thatf is an odd function, and
the equivariance condition (2.5) is also an immediate consequence of (2.7) (cf. (A.3)). Before
verifying (2.4), we gather some useful information and lemmas that make the calculations
easier.

Letω be an arbitrary fixed element of Ǧ. For every λ ∈ C, let bλ := ad ω−λI = ω̄−λI ∈
End (G). Thanks to the derivation property of ad ω, the bλ enjoy the identities

bnα+β [X, Y ] =
n∑

j=0

(
n

j

) [
bjαX, b

n−j
β Y

] ∀X, Y ∈ G,∀α, β ∈ C. (2.8)
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By means of the G = ⊕λ∈σ(ω̄)Nλ Jordan decomposition, where Nλ = Ker(bν(λ)λ ) (see
appendix A), the r-matrix (2.7) can be written as

R (ω) = f (ω̄) =
∑

λ∈σ(ω̄)

ν(λ)−1∑
k=0

f (k) (λ)

k!
bkλEλ. (2.9)

We can regard this equation as the application of (A.4) to the operator ad ω. HereEλ ∈ End(G)
means the projection corresponding to the subspace Nλ. Note also that [Nλ,Nµ] ⊂ Nλ+µ is
implied by (2.8), with Nµ = {0} for any µ /∈ σ(ω̄).

The mCDYBE (2.4) is linear in X and Y . Therefore it is enough to prove this equation
whenX ∈ Nλ, Y ∈ Nµ are arbitrary elements of the subspaces associated with the eigenvalues
λ,µ ∈ σ (ω̄). So, from now on let λ,µ be arbitrary, fixed eigenvalues of ω̄ and X ∈ Nλ,
Y ∈ Nµ arbitrary, but fixed vectors. Applying the r-matrix (2.9) to these vectors, we obtain

R (ω)X = f (ω̄)X =
ν(λ)−1∑
k=0

f (k) (λ)

k!
bkλX

R (ω) Y = f (ω̄) Y =
ν(µ)−1∑
l=0

f (l) (µ)

l!
blµY.

(2.10)

In the following four lemmas we calculate the various terms of the mCDYBE (2.4) in a form
that will prove convenient for verifying this equation. In all expressions containing

[
bkλX, b

l
µY
]

it is understood that the indices k, l vary as in (2.10).

Lemma 2. If λ,µ ∈ σ(ω̄), X ∈ Nλ, Y ∈ Nµ, then

1

4
[X, Y ] =

∑
k,l

lim
(α,β)→(λ,µ)

∂k+l

∂αk∂βl

1

4

[
bkλX, b

l
µY
]

k!l!
(2.11)

[f (ω̄)X, f (ω̄)Y ] =
∑
k,l

lim
(α,β)→(λ,µ)

∂k+l

∂αk∂βl
f (α)f (β)

[
bkλX, b

l
µY
]

k!l!
(2.12)

f (ω̄) [f (ω̄)X, Y ] =
∑
k,l

lim
(α,β)→(λ,µ)

∂k+l

∂αk∂βl
f (α + β)f (α)

[
bkλX, b

l
µY
]

k!l!
(2.13)

f (ω̄) [X, f (ω̄) Y ] =
∑
k,l

lim
(α,β)→(λ,µ)

∂k+l

∂αk∂βl
f (α + β)f (β)

[
bkλX, b

l
µY
]

k!l!
. (2.14)

Proof. First, identity (C.3) from appendix C leads immediately to (2.11) as

1

4
[X, Y ] = 1

4

[
b0
λX, b

0
µY
] =

∑
k,l

δk,0δl,0

4

[
bkλX, b

l
µY
]

k!l!
=
∑
k,l

∂k+l

∂αk∂βl

1

4

[
bkλX, b

l
µY
]

k!l!
. (2.15)

Second, with the aid of (2.10) and (C.4), we easily obtain (2.12)

[f (ω̄)X, f (ω̄) Y ] =
∑
k,l

f (k) (λ) f (l) (µ)

[
bkλX, b

l
µY
]

k!l!

=
∑
k,l

lim
(α,β)→(λ,µ)

∂k+l

∂αk∂βl
f (α) f (β)

[
bkλX, b

l
µY
]

k!l!
. (2.16)

Third, the calculation of

f (ω̄) [f (ω̄)X, Y ] = f (ω̄)

[∑
k

f (k) (λ)

k!
bkλX, Y

]
(2.17)
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goes as follows. Since
[∑

k
f (k)(λ)

k! bkλX, Y
]

∈ Nλ+µ, equation (2.10) yields

f (ω̄) [f (ω̄)X, Y ] =
∑
k,l

f (k) (λ) f (l) (λ + µ)

k!l!
blλ+µ

[
bkλX, Y

]

=
∑
k,l

f (k) (λ) f (l) (λ + µ)

k!l!

l∑
j=0

(
l

j

) [
b
k+l−j
λ X, bjµY

]
(2.18)

where we used (2.8). Introducing a new variable s := k + l for the summation, we have

f (ω̄)
[
f (ω̄)X, Y

] =
∑
s

s∑
j=0

s∑
l=j

(
l

j

)
f (s−l) (λ) f (l) (λ + µ)

(s − l)!l!

[
b
s−j
λ X, bjµY

]

=
∑
s

s∑
j=0

s−j∑
l=0

(
l + j

j

)
f (j+l) (λ + µ) f (s−j−l) (λ)

(l + j)! (s − j − l)!

[
b
s−j
λ X, bjµY

]

=
∑
s

s∑
j=0

1

j ! (s − j)!

s−j∑
l=0

(
s − j

l

)
f (j+l) (λ + µ) f (s−j−l) (λ)

[
b
s−j
λ X, bjµY

]
.

(2.19)

Using the Leibniz rule and introducing new summation variables as l := j , k := s − j , we
obtain

f (ω̄) [f (ω̄)X, Y ] =
∑
s

s∑
j=0

1

j ! (s − j)!

ds−j

dξ s−j

∣∣∣∣
ξ=λ

f (j) (ξ + µ) f (ξ)
[
b
s−j
λ X, bjµY

]

=
∑
k,l

dk

dξk

∣∣∣∣
ξ=λ

f (l) (ξ + µ) f (ξ)

[
bkλX, b

l
µY
]

k!l!
. (2.20)

By (C.5), this gives (2.13). Finally, equation (2.14) is trivial consequence of (2.13). �
Lemma 3. If λ,µ ∈ σ(ω̄), X ∈ Nλ, Y ∈ Nµ, then

〈X, (∇R)(ω)Y 〉 = −
∑
k,l

lim
(α,β)→(λ,µ)

∂k+l

∂αk∂βl

f (α) + f (β)

α + β

[
bkλX, b

l
µY
]

k!l!
. (2.21)

Proof. We obtain directly from the definitions (2.2), (2.3), (2.7) (see also (A.3)) that

〈X, (∇R) (ω) Y 〉 = 1

2π i

∫
C

dξ f (ξ) T j 〈X, ρξ (ω̄) [Tj , ρξ (ω̄) Y ]〉 (2.22)

where ρξ (ω̄) = (ξI − ω̄)−1. By using that ρξ (ω̄)T = −ρ−ξ (ω̄) and the invariance of 〈 , 〉, this
expression is easily converted into

〈X, (∇R) (ω) Y 〉 = 1

2π i

∫
C

dξ f (ξ)
[
ρ−ξ (ω̄)X, ρξ (ω̄) Y

]
. (2.23)

We can apply the functional calculus to the holomorphic function ρξ : (C \ {ξ}) → C defined
by ρξ : z �→ (ξ − z)−1. Thus we have

ρ−ξ (ω̄)X =
∑
k

ρ
(k)
−ξ (λ)
k!

bkλX ρξ (ω̄) Y =
∑
l

ρ
(l)
ξ (µ)

l!
blµY (2.24)

similarly to (2.10). Since ρ(k)−ξ (λ) = k! (−ξ − λ)−(k+1) = (−1)k+1 ρξ (−λ), this leads to

〈X, (∇R) (ω) Y 〉 =
∑
k,l

(
(−1)k+1

2π i

∫
C

dξ f (ξ) ρ
(k)
ξ (−λ) ρ(l)ξ (µ)

) [
bkλX, b

l
µY
]

k!l!
. (2.25)
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Now our task is to determine these integrals. Obviously, two different cases can appear. When
−λ = µ, the integrands have poles only at the point µ. Alternatively, when −λ �= µ, the
integrands have poles at the point −λ and at the point µ.

The λ + µ = 0 case. In this case ρ
(k)
ξ (−λ) ρ(l)ξ (µ) = k!l! (ξ − µ)−(k+l+1)−1. Thanks to

Cauchy’s theorem, the integrals can be written as

(−1)k+1

2π i

∫
C

dξ f (ξ) ρ
(k)
ξ (−λ) ρ(l)ξ (µ) = (−1)k+1 k!l!

2π i

∫
C

dξ
f (ξ)

(ξ − µ)(k+l+1)+1

= (−1)k+1 k!l!

(k + l + 1)!
f (k+l+1) (µ) = − lim

(α,β)→(λ,µ)

∂k+l

∂αk∂βl

f (α) + f (β)

α + β
(2.26)

where we used the identity (C.8). Thus (2.21) is valid in this case.

The λ + µ �= 0 case. By Cα we denote a sufficiently small circle around the eigenvalue
α ∈ σ (ω̄), which encircles this point in the positive sense. Using Cauchy’s theorem in (2.25),
we can write

(−1)k+1

2π i

∫
C

dξ f (ξ) ρ
(k)
ξ (−λ) ρ(l)ξ (µ)

= (−1)k+1

{
1

2π i

∫
Cµ

dξ f (ξ) ρ
(k)
ξ (−λ) ρ(l)ξ (µ)

+
1

2π i

∫
C−λ

dξ f (ξ) ρ
(l)
ξ (µ) ρ

(k)
ξ (−λ)

}

= (−1)k+1

{
dl

dξ l

∣∣∣∣
ξ=µ

f (ξ) (−1)k+1 ρ
(k)
−λ (ξ) +

dk

dξk

∣∣∣∣
ξ=−λ

f (ξ) (−1)l+1 ρ(l)µ (ξ)

}

= (−1)k
{ l∑

a=0

(−1)k
(
l

a

)
f (a) (µ) ρ

(k+l−a)
−λ (µ)

+
k∑

b=0

(−1)l
(
k

b

)
f (b) (−λ) ρ(k+l−b)

µ (−λ)
}

= − (−1)k+l
l∑

a=0

(
l

a

)
(k + l − a)! (−1)a

f (a) (µ)

(λ + µ)k+l+1−a

− (−1)k+l
k∑

b=0

(
k

b

)
(k + l − b)! (−1)b

f (b) (λ)

(λ + µ)k+l+1−b . (2.27)

Comparing this equation with (C.7), we see that when λ + µ �= 0

(−1)k+1

2π i

∫
C

dξ f (ξ) ρ
(k)
ξ (−λ) ρ(l)ξ (µ) = − ∂k+l

∂αk∂βl

∣∣∣∣
(α,β)=(λ,µ)

f (α) + f (β)

α + β
. (2.28)

Thus the proof of the lemma is complete. �

Lemma 4. If λ,µ ∈ σ (ω̄), X ∈ Nλ, Y ∈ Nµ, then

(∇XR)(ω)Y =
∑
k,l

lim
(α,β)→(λ,µ)

∂k+l

∂αk∂βl

f (α + β)− f (β)

α

[
bkλX, b

l
µY
]

k!l!
. (2.29)
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Proof. As a consequence of (A.3), the left-hand side of (2.29) can be written as

(∇XR)(ω)Y = 1

2π i

∫
C

dξ f (ξ) ρξ (ω̄)
[
X, ρξ (ω̄) Y

]
. (2.30)

The application of the functional calculus (see also (2.14) and (C.6)) gives

ρξ (ω̄)
[
X, ρξ (ω̄) Y

] =
∑
k,l

dl

dηl

∣∣∣∣
η=µ

ρ
(k)
ξ (λ + η) ρξ (η)

[
bkλX, b

l
µY
]

k!l!
. (2.31)

Therefore,

(∇XR) (ω) Y =
∑
k,l

{
l∑

j=0

(
l

j

)
1

2π i

∫
C

dξ f (ξ) ρ
(k+l−j)
ξ (λ + µ) ρ

(j)

ξ (µ)

} [
bkλX, b

l
µY
]

k!l!
.

(2.32)

When λ = 0, the integrands have poles only at the point µ. If λ �= 0, then the integrands have
poles at the points λ + µ and µ.

The λ = 0 case. In this case ρ
(k+l−j)
ξ (λ + µ) ρ

(j)

ξ (µ) = (k + l − j)!j ! (ξ − µ)−(k+l+1)−1.
Thus

l∑
j=0

(
l

j

)
1

2π i

∫
C

dξ f (ξ) ρ
(k+l−j)
ξ (λ + µ) ρ

(j)

ξ (µ)

=
l∑

j=0

(
l

j

)
(k + l − j)!j !

f (k+l+1) (µ)

(k + l + 1)!
= k!l!f (k+l+1) (µ)

(k + l + 1)!

l∑
j=0

(
(k + l)− j

(k + l)− l

)

= k!l!f (k+l+1) (µ)

(k + l + 1)!

(
k + l + 1

l

)
= f (k+l+1) (µ)

k + 1

= lim
(α,β)→(λ,µ)

∂k+l

∂αk∂βl

f (α + β)− f (β)

α
(2.33)

where we used the combinatorial identity (B.2) and (C.14). So in this case (2.29) holds.

The λ �= 0 case. Denote by Cα a sufficiently small circle around α ∈ σ (ω̄). Then, by
Cauchy’s theorem, the relevant integrals in (2.32) give

1

2π i

∫
C

dξ f (ξ) ρ
(k+l−j)
ξ (λ + µ) ρ

(j)

ξ (µ) = 1

2π i

∫
Cµ

dξ f (ξ) ρ
(k+l−j)
ξ (λ + µ) ρ

(j)

ξ (µ)

+
1

2π i

∫
Cλ+µ

dξ f (ξ) ρ
(j)

ξ (µ) ρ
(k+l−j)
ξ (λ + µ)

= dj

dξ j

∣∣∣∣
ξ=µ

f (ξ) ρ
(k+l−j)
ξ (λ + µ) +

dk+l−j

dξk+l−j

∣∣∣∣
ξ=λ+µ

f (ξ) ρ
(j)

ξ (µ)

= (−1)k+l−j+1
j∑

a=0

(
j

a

)
(k + l − a)!

f (a) (µ)

λk+l−a+1

+
k+l−j∑
b=0

(
k + l − j

b

)
(j + b)! (−1)b

f (k+l−j−b) (λ + µ)

λj+b+1
. (2.34)
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Thus the coefficient of
[
bkλX, b

l
µY
]
/k!l! in (2.32) is equal to the following expression:

l∑
j=0

(
l

j

){
(−1)k+l−j+1

j∑
a=0

(
j

a

)
(k + l − a)!

f (a) (µ)

λk+l−a+1

+
k+l−j∑
b=0

(
k + l − j

b

)
(j + b)! (−1)b

f (k+l−j−b) (λ + µ)

λj+b+1

}
. (2.35)

Firstly, do the summation of the first part of (2.35):

Part 1(k, l) :=
l∑

j=0

(
l

j

)
(−1)k+l+1−j

j∑
a=0

(
j

a

)
(k + l − a)!

f (a) (µ)

λk+l−a+1

= (−1)k+l+1
l∑

a=0

(k + l − a)!l!

a! (l − a)!

f (a) (µ)

λk+l−a+1
(−1)a

l−a∑
j=0

(
l − a

j

)
(−1)j

= (−1)k+l+1
l∑

a=0

(k + l − a)!l!

a! (l − a)!

f (a) (µ)

λk+l−a+1
(−1)a δl−a,0

= − (−1)k k!
f (l) (µ)

λk+1
. (2.36)

Secondly, do the summation of the second part of (2.35). Introducing a new variablem := j+b,
we obtain

Part 2(k, l) :=
l∑

j=0

(
l

j

) k+l−j∑
b=0

(
k + l − j

b

)
(j + b)! (−1)b

f (k+l−j−b) (λ + µ)

λj+b+1

= −
l∑

j=0

k+l−j∑
b=0

(−1)m+1 k!l!

(k + l −m)!

f (k+l−m) (λ + µ)

λm+1
(−1)j

(
m

j

)(
k + l − j

k

)

= −
l∑

m=0

(−1)m+1 k!l!

(k + l −m)!

f (k+l−m) (λ + µ)

λm+1

m∑
j=0

(−1)j
(
m

j

)(
k + l − j

k

)

−
k+l∑

m=l+1

(−1)m+1 k!l!

(k + l −m)!

f (k+l−m) (λ + µ)

λm+1

×
l∑

j=0

(−1)j
(
m

j

)(
k + l − j

k

)
. (2.37)

By means of the combinatorial identities (B.3), (B.10), we can simplify this formula. In fact,
after a straightforward further computation, we get

Part 2(k, l) = −
k∑

m=0

(−1)m+1 k!

(k −m)!

f (k+l−m) (λ + µ)

λm+1
. (2.38)

Now collecting equations (2.38), (2.36), (2.35), (2.32), in the λ �= 0 case we can write

(∇XR) (ω) Y =
∑
k,l

{Part 1(k, l) + Part 2(k, l)}
[
bkλX, b

l
µY
]

k!l!

=
∑
k,l

∂k+l

∂αk∂βl

∣∣∣∣
(α,β)=(λ,µ)

f (α + β)− f (β)

α

[
bkλX, b

l
µY
]

k!l!
(2.39)

since equation (C.13) is valid. Hence lemma 4 is proved. �
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Lemma 5. If λ,µ ∈ σ (ω̄), X ∈ Nλ, Y ∈ Nµ, then

(∇YR) (ω)X = −
∑
k,l

lim
(α,β)→(λ,µ)

∂k+l

∂αk∂βl

f (α + β)− f (α)

β

[
bkλX, b

l
µY
]

k!l!
. (2.40)

Proof. This is a trivial consequence of the preceding lemma. �
Now we are in the position to verify the mCDYBE (2.4) for the canonical r-matrix (2.7).

Proof of theorem 1. Let λ,µ ∈ σ (ω̄) and X ∈ Nλ, Y ∈ Nµ. By applying the four lemmas,
the left-hand side of (2.4) can be written as
1
4 [X, Y ] + [R (ω)X,R (ω) Y ] − R (ω) ([R (ω)X, Y ] + [X,R (ω) Y ])

+〈X, (∇R) (ω) Y 〉 + (∇YR) (ω)X − (∇XR) (ω) Y

=
∑
k,l

lim
(α,β)→(λ,µ)

∂k+l

∂αk∂βl

(
1

4
+ f (α) f (β)− f (α + β) (f (α) + f (β))

−f (α) + f (β)

α + β
− f (α + β)− f (α)

β
− f (α + β)− f (β)

α

)[
bkλX, b

l
µY
]

k!l!
.

(2.41)

This equals zero since the ‘addition formula’ (C.1) is valid for the function f in (1.3). �

3. Discussion

We have shown that the canonical r-matrix defined by (2.7) with f in (1.3) satisfies the
mCDYBE (2.4). It is worth noticing that our proof implies a uniqueness result as well. Suppose
that we wish to define an antisymmetric solution of the mCDYBE (2.4) by the functional
calculus, i.e., by using some holomorphic complex function in formula (2.7) now considered
as an ansatz. For this formula to be well defined, the domain of holomorphicity of the function
f must contain zero, since this is always an eigenvalue of adω. Moreover, for R to be
antisymmetric, which is in turn necessary for the equivalence of (2.4) to (1.1) with ϕ in (1.4),
f must be an odd function. Under these assumptions, the mCDYBE (2.4) for the ansatz (2.7)
is in fact equivalent to the functional equation (C.1) for the unknown function f . Indeed, the
whole calculation described in section 2 is valid for such an ansatz up to the equality in (2.41).
The point then is that the functional equation (C.1) has a unique odd solution around the origin.
The proof of this statement is quite easy. By taking the y → 0 limit in (C.1) we obtain the
differential equation for f which appears in (C.2). With the initial value f (0) = 0, which is
implied by f being odd, this differential equation has a unique, holomorphic solution around
the origin, namely the function f (x) = 1

2 coth x
2 − 1

x
.

So far we assumed the Lie algebra G to be complex, but the mCDYBE can be considered
for a real self-dual Lie algebra, too. The real case arises naturally in applications [3,4]. Let us
now suppose that G is the complexification of a real self-dual Lie algebra, say Gr . Then it is
not difficult to see that R(ω) given by (2.7) maps Gr to Gr if ω ∈ Gr . This is obviously the case
if ω is near to zero, where one can apply the power series expansion of f around zero to define
R(ω). More generally, if ω ∈ Gr then one may take the curve C in (2.7) to be invariant under
complex conjugation as the eigenvalues of ad ω occur in conjugate pairs. By using this and
f (z̄) = f̄ (z), complex conjugation of (2.7) shows that R(ω)X ∈ Gr if ω ∈ Gr and X ∈ Gr .
Thus the canonical r-matrix is a solution of the mCDYBE (2.4) in the real case as well.

Our use of the functional calculus, which is applicable to Banach algebras in general [9],
in the definition (2.7) might serve as a starting point for future work towards generalizations of
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this canonical r-matrix to certain infinite-dimensional self-dual Banach Lie algebras. However,
this represents a nontrivial problem since the above-presented proof of theorem 1 relies heavily
on the finite dimensionality of G.
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Appendix A. Functional calculus of linear operators

For convenient reference in the main text, in this appendix we collect some results from the
theory of bounded operators based on chapter VII of the book [9].

Let X �= {0} be a complex Banach space. The space of bounded linear operators
on X is denoted by B (X), which is a Banach algebra in the usual way. Let T ∈
B (X) be a bounded linear operator. The resolvent set of T is given by R (T ) =
{λ ∈ C | λI − T invertible operator}, where I is the unit operator. The spectrum σ (T ) of
T is the complement of R (T ). The formula R(T ) � ξ �→ ρξ (T ) = (ξI − T )−1 defines
the resolvent function of T . Denote by F (T ) the set of all complex functions f that are
holomorphic on some neighbourhood of σ (T ). Then one can define the functions f (T ) of
the operator T as follows.

Definition A.1. Let f ∈ F (T ) and consider a closed, rectifiable curve C that lies in the
domain of analyticity of f and encircles the spectrum σ (T ) in the positive sense customary
in the theory of complex variables. Then the operator f (T ) is defined by the equation

f (T ) = 1

2π i

∫
C

f (ξ) ρξ (T ) dξ. (A.1)

It can be shown that f (T ) depends only on the function f , and not on the curve C. Some
important properties of this functional calculus are gathered in the following theorem.

Theorem A.2. If f, g ∈ F (T ) and α, β ∈ C then

• αf + βg ∈ F (T ) and (αf + βg) (T ) = αf (T ) + βg (T ),
• fg ∈ F (T ) and (fg) (T ) = f (T ) g (T ),
• if f has the power series expansion f (z) = ∑∞

k=0 ckz
k valid in a neighbourhood of σ (T ),

then f (T ) = ∑∞
k=0 ckT

k .

One can define the directional derivatives, (∇Sf )(T ) ∈ B(X), of f (T ) by

(∇Sf )(T ) := d

dt

∣∣∣∣
t=0

f (T + tS) S ∈ B(X). (A.2)

The integral formula (A.1) implies the equation

(∇Sf )(T ) = 1

2π i

∫
C

f (ξ)ρξ (T )Sρξ (T ) dξ. (A.3)

Now suppose that X is a finite-dimensional Banach space. In this case the spectrum
σ(T ) of the operator T has finitely many elements, which are just the eigenvalues of T . The
index ν(λ) of an eigenvalue λ is the smallest positive integer ν such that (λI − T )νx = 0
for every vector x for which (λI − T )ν+1x = 0. Introducing the invariant subspaces
Nλ := Ker(T − λI)ν(λ), one has the usual X = ⊕λ∈σ(T )Nλ Jordan decomposition of X.
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Theorem A.3. If dim(X) < ∞ and f ∈ F(T ), then

f (T ) =
∑

λ∈σ(T )

ν(λ)−1∑
k=0

1

k!
f (k) (λ) (T − λI)k Eλ (A.4)

where Eλ ∈ B(X) is the projection operator of the subspace Nλ.

Appendix B. Some combinatorial identities

We here gather some elementary combinatorial identities needed in section 2.

Identity B.1. If k, l ∈ N := {0, 1, 2, . . .}, then

k∑
n=0

(−1)n
1

n + l + 1

(
k

n

)
= k!l!

(k + l + 1)!
. (B.1)

Proof. By induction with respect to k. �

Identity B.2. If k, n ∈ N and 0 � k � n, then

k∑
a=0

(
n− a

n− k

)
=
(
n + 1
k

)
. (B.2)

Proof. By induction with respect to n. �

Identity B.3. Let k, l,m ∈ N and 0 � m � l, then

m∑
j=0

(−1)j
(
m

j

)(
k + l − j

k

)
=



0 if k < m(
k + l −m

l

)
if k � m.

(B.3)

Proof. Consider the smooth function

R × (R \ {0}) � (a, b) �→ bk+l−m (a + b)m . (B.4)

Using the binomial theorem, we can write

bk+l−m (a + b)m =
m∑
j=0

(
m

j

)
ajbk+l−j . (B.5)

Let us differentiate this equation k times with respect to b. Then the left-hand side gives

∂k

∂bk

(
bk+l−m (a + b)m

) =
k∑

i=0

(
k

i

)(
∂k−i

∂bk−i
bk+l−m

)
∂i

∂bi
(a + b)m

=
min(m,k)∑
i=0

(
k

i

)
(k + l −m)!m!

(l + i −m)! (m− i)!
bl−m+i (a + b)m−i . (B.6)

By evaluating this equation at a = −1, b = 1, we obtain

∂k

∂bk

(
bk+l−m (a + b)m

) ∣∣∣∣
a=−1, b=1

=



0 if k < m

k!

(
k + l −m

l

)
if k � m.

(B.7)
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At the same time, the right-hand side of (B.5) gives

∂k

∂bk

m∑
j=0

(
m

j

)
ajbk+l−j = k!

m∑
j=0

(
m

j

)(
k + l − j

k

)
ajbl−j . (B.8)

It follows that
∂k

∂bk

m∑
j=0

(
m

j

)
ajbk+l−j

∣∣∣∣
a=−1, b=1

= k!
m∑
j=0

(−1)j
(
m

j

)(
k + l − j

k

)
. (B.9)

Comparing (B.7) and (B.9) we see that our statement is valid. �
Identity B.4. Let k, l,m ∈ N and l < m � k + l, then

l∑
j=0

(−1)j
(
m

j

)(
k + l − j

k

)
=



0 if k < m(
k + l −m

l

)
if k � m.

(B.10)

Proof. Similar to the preceding identity. �

Appendix C. Addition formula and further identities

Let us consider the function f (x) = 1
2 coth x

2 − 1
x

. This function is holomorphic on the whole
complex plane except the points 2π iZ∗, where it has first-order poles. Using the familiar
coth x coth y−coth (x + y) (coth x + coth y)+1 = 0 identity, the following ‘addition formula’
can be obtained:

Identity C.1. If x �= 0, y �= 0, x + y �= 0, then
1
4 + f (x) f (y)− f (x + y) (f (x) + f (y))

−f (x + y)− f (y)

x
− f (x + y)− f (x)

y
− f (x) + f (y)

x + y
= 0. (C.1)

On its domain of holomorphicity, the function f satisfies also the relations

f (k) (−x) = (−1)k+1 f (k) (x) f ′ (x) + 2
f (x)

x
+ f 2 (x) = 1

4
. (C.2)

The first relation in (C.2) uses only the fact that f is an odd function, while the second relation
follows, for example, by taking the y → 0 limit in (C.1).

For convenience, we now collect some further identities that give the results for the
differentiation of expressions of the type appearing in (C.1). All these identities are obvious,
and are actually valid for any odd holomorphic function f . They are used in section 2 to derive
the equality in (2.41) for the r-matrix of the form in (2.7).

Identity C.2. If k, l ∈ N = {0, 1, 2, . . .}, then

∂k+l

∂xk∂yl

1

4
= 1

4
δk,0δl,0 (C.3)

∂k+l

∂xk∂yl
f (x) f (y) = f (k) (x) f (l) (y) (C.4)

∂k+l

∂xk∂yl
f (x + y) f (x) = dk

dξk

∣∣∣∣
ξ=x

f (l) (ξ + y) f (ξ) (C.5)

∂k+l

∂xk∂yl
f (x + y) f (y) = dl

dξ l

∣∣∣∣
ξ=y

f (k) (ξ + x) f (ξ) . (C.6)
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Identity C.3. If x + y �= 0, then

∂k+l

∂xk∂yl

f (x) + f (y)

x + y
= (−1)k+l

l∑
a=0

(
l

a

)
(k + l − a)! (−1)a

f (a) (y)

(x + y)k+l+1−a

+ (−1)k+l
k∑

b=0

(
k

b

)
(k + l − b)! (−1)b

f (b) (x)

(x + y)k+l+1−b . (C.7)

We also have

lim
x→−y

∂k+l

∂xk∂yl

f (x) + f (y)

x + y
= (−1)k

k!l!

(k + l + 1)!
f (k+l+1) (y) . (C.8)

Proof. Equation (C.7) is a direct consequence of the Leibniz rule. To verify (C.8), let us
introduce u := x + y, y = u− x. By using power series expansion around u = 0, we have

f (x) + f (y)

x + y
= f (x) + f (u− x)

u
= f (x)− f (x − u)

u

=
∞∑
n=0

(−1)n
f (n+1) (x)

(n + 1)!
un =

∞∑
n=0

(−1)n
f (n+1) (x)

(n + 1)!
(x + y)n . (C.9)

Differentiating this equation l times with respect to y, we get that

∂l

∂yl

f (x) + f (y)

x + y
= (−1)l

∞∑
n=0

(−1)n

n! (n + l + 1)
f (n+l+1) (x) (x + y)n . (C.10)

Then differentiating k times with respect to x, we obtain

∂k+l

∂xk∂yl

f (x) + f (y)

x + y
= (−1)l

k∑
n=0

(
(−1)n

n + l + 1

n∑
j=0

(
k

j

)
f (n+l+1+k−j) (x)

(n− j)!
(x + y)n−j

)

+ (−1)l
∞∑

n=k+1

(
(−1)n

n + l + 1

k∑
j=0

(
k

j

)
f (n+l+1+k−j) (x)

(n− j)!
(x + y)n−j

)
. (C.11)

Now, let us take the limit x → −y. Using the combinatorial identity (B.1), we can see that

lim
x→−y

∂k+l

∂xk∂yl

f (x) + f (y)

x + y
= (−1)k f (k+l+1) (y)

k∑
n=0

(−1)n

n + l + 1

(
k

n

)

= (−1)k
k!l!

(k + l + 1)!
f (k+l+1) (y) (C.12)

whereby the proof is complete. �

Identity C.4. If x �= 0, then

∂k+l

∂xk∂yl

f (x + y)− f (y)

x
= −

k∑
m=0

k!

(k −m)!
(−1)m+1 f

(k+l−m) (x + y)

xm+1
− (−1)k k!

f (l) (y)

xk+1
.

(C.13)

In the limit case, we have

lim
x→0

∂k+l

∂xk∂yl

f (x + y)− f (y)

x
= f (k+l+1) (y)

k + 1
. (C.14)
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Proof. The verification of (C.13) is trivial. As for (C.14), the power series expansion of f
around x = 0 implies that

f (x + y)− f (y)

x
= 1

1!
f ′ (y) + · · · +

1

(k + 1)!
f (k+1) (y) xk + O (

xk+1
)
. (C.15)

By taking the derivatives of this equation, we obtain that

∂k

∂xk

f (x + y)− f (y)

x
= f (k+1) (y)

k + 1
+ O (x) (C.16)

and

∂k+l

∂xk∂yl

f (x + y)− f (y)

x
= f (k+l+1) (y)

k + 1
+ O (x) (C.17)

which implies (C.14). �
Identity C.5. If y �= 0, then

∂k+l

∂xk∂yl

f (x + y)− f (x)

y
= −

l∑
m=0

l!

(l −m)!
(−1)m+1 f

(k+l−m) (x + y)

ym+1
− (−1)l l!

f (k) (x)

yl+1
.

(C.18)

In the limit case,

lim
y→0

∂k+l

∂xk∂yl

f (x + y)− f (x)

y
= f (k+l+1) (x)

l + 1
. (C.19)

Proof. This is an obvious consequence of the preceding identity. �
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